## Reactivity Tuning by Ligand Effects: Gas-Phase Reactions of $Fe(C_6H_6)O^+$ versus "Bare" FeO<sup>+</sup>

## Detlef Stöckigt and Helmut Schwarz\*

Institut für Organische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, F.R.G.

Received July 8, 1994

Key Words: Bond activation / Oxygen atom transfer / Iron oxenoid chemistry / Rate constants / Ion cyclotron resonance mass spectrometry / Ligand effects

The presence of a benzene ligand in  $Fe(C_6H_6)O^+$  (1) has a profound effect on the gas-phase reactivity of FeO<sup>+</sup>. While the latter oxide is known to act as an efficient C-H/C-C bond-activation reagent, the ligated species 1 is entirely unreactive in that respect. However, 1 serves as an excellent reagent for transferring oxygen to various olefins. In addition, it is demonstrated that the ligand substitution Fe $(C_6H_6)O^+ + X \rightarrow Fe(X)O^+ + C_6H_6$  follows two principally different pathways. For  $X = C_6D_6$  and  $C_5H_5N$  the traditional

direct substitution process with attack at the metal centre is operative. However, for X = olefins it is argued that the olefin will not initially attack the metal center; rather, the reaction commences by coordinating the olefin X to the oxygen atom of  $Fe(C_6H_6)O^+$ . The resulting intermediate  $(C_6H_6)Fe(OX)^+$  will then fall apart either to separated  $Fe(OX)^+/C_6H_6$  or to  $Fe(C_6H_6)^+/OX$ , thus bringing about an epoxidation of the olefin rather than ketone formation.

Understanding the mechanistic details that underly transition-metal oxide mediated activation of C-H and C-C bonds is a necessary condition for improving numerous important processes in biochemistry, organic and organometallic chemistry<sup>[1]</sup>. Recently, we reported on the gas-phase oxidation of molecular hydrogen<sup>[2]</sup>, methane<sup>[3]</sup>, benzene<sup>[4]</sup>, and toluene<sup>[5]</sup> by "bare" FeO<sup>+</sup>. By using a combined experimental/theoretical approach it was demonstrated<sup>[6]</sup> that detailed insight into crucial mechanistic features is available not the least due to the fact that the gas-phase system is not perturbed by effects which are usually operative in the condensed phase and which obscure the intrinsic properties of the reactive species. The richness of the gas-phase chemistry of "bare"  $FeO^+$  with simple molecules RH (R = H,  $CH_3$ ,  $C_6H_5$ ,  $C_6H_5CH_2$ ) is indicated in Scheme 1; here, the main reactions are depicted when thermalized FeO<sup>+</sup> under single-collision conditions "hits" RH: (i) For molecular hydrogen, in a kinetically extremely inefficient process<sup>[6c,7]</sup> the only product formed corresponds to H<sub>2</sub>O; (ii) CH<sub>4</sub> reacts preferentially with FeO<sup>+</sup> either via H-atom transfer (to generate CH<sub>3</sub>) or oxygenation of CH<sub>4</sub> to CH<sub>3</sub>OH; (iii) the reaction of benzene commences with an electrophilic attack by FeO<sup>+</sup>, and the major products correspond to  $C_6H_5OH$ , CO,  $H_2O$  and  $HCO^{\bullet}$ ; (iv) for toluene yet another reaction is observed involving a formal H<sup>-</sup> transfer from the methyl group to yield neutral FeOH and the benzylium ion. Not surprisingly, the outcome of the gas-phase process depends strongly on the neutral substrate chosen and, as repeatedly demonstrated, on the nature of the transition metal of the oxide MO<sup>+[8]</sup>.

Ligands L are also known to change the intrinsic properties of transition-metal cations<sup>[9]</sup>, and here we will demonstrate that the presence of a single benzene ligand will profoundly affect the oxidation behavior of "bare"  $\text{FeO}^{+[10]}$ . In addition, a comparison of the reactivity of "bare"  $\text{FeO}^+$ with  $\text{Fe}(C_6H_6)O^+$  is expected to bridge the behavior of gasphase transition-metal chemistry and organometallic chemistry in the condensed phase.

Scheme 1



We will first describe the generation and structural characterization of  $Fe(C_6H_6)O^+$  and then discuss its reactions with a wide range of neutral molecules X employing the method of Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry.

## **Results and Discussion**

Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup> is conveniently formed by reaction of Fe(C<sub>6</sub>H<sub>6</sub>)<sup>+</sup>H with N<sub>2</sub>O (Eq. 1a). The pseudo first-order rate constant for Eq. (1) has been determined to be  $k_f = 8.4 \times 10^{-10}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>; thus, the reaction proceeds at collision rate<sup>[11]</sup> ( $k_{coll} = 7.4 \times 10^{-10}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>). As byproducts, the cationic species Fe(C<sub>5</sub>H<sub>6</sub>)<sup>+</sup> and Fe(C<sub>6</sub>H<sub>4</sub>)O<sup>+</sup> are generated. Both thermochemical considerations<sup>[12]</sup> and secondary reactions with benzene<sup>[13]</sup> suggest that the C<sub>5</sub>H<sub>6</sub> ligand most likely corresponds to cyclopentadiene while Fe(C<sub>6</sub>H<sub>4</sub>)O<sup>+</sup> presumably consists of a benzyne ligand attached to FeO<sup>+</sup>.

2499

$$Fe(C_{6}H_{6})^{+} \xrightarrow{N_{2}O} N_{2} \xrightarrow{86\%} Fe(C_{6}H_{6})O^{+}$$
(1a)  

$$9\% \quad Fe(C_{5}H_{6})^{+} + CO$$
(1b)  

$$5\% \quad Fe(C_{6}H_{4})O^{+} + H_{2}$$
(1c)

(ii) H/D exchange<sup>[14]</sup> is not observed in the reactions of  $Fe(C_6H_6)O^+$  with D<sub>2</sub>O, D<sub>2</sub> or C<sub>2</sub>D<sub>4</sub>, thus excluding the presence of functional groups like O-H or Fe-H. Furthermore, the absence of H/D exchange processes in the reactions of  $Fe(C_6H_6)O^+$  with D<sub>2</sub>O rules out a phenol or a 2,4-cyclohexadienone unit<sup>[6b]</sup>, in line with the findings to be discussed further below.

(iii) A structural characterization of  $Fe(C_6H_6)O^+$  was also attempted by a collision-induced dissociation (CID) experiment. To this end, mass-selected  $Fe(C_6H_6)O^+$  was translationally excited ( $E_{lab} \leq 0-90 \text{ eV}$ ) under FTICR conditions and allowed to collide with argon. The CID spectrum of  $Fe(C_6H_6)O^+$  is shown in Figure 1b, and a comparison with the CID spectrum of an independently generated<sup>[15]</sup> isomer  $Fe(C_5H_6)CO^+$  (Figure 1a) exhibits pronounced differences. For  $Fe(C_5H_6)CO^+$  the dominant process corresponds to loss of the weakly bound CO ligand [to generate  $Fe(C_5H_6)^+$ ]; at higher energy ( $E_{lab} > 35 \text{ eV}$ ) combined CO/H• loss opens up a new channel, and at collision energies  $E_{\text{lab}} > 60 \text{ eV}$  both ligands are evaporated. In the spectrum of  $Fe(C_6H_6)O^+$  (Figure 1b) we note the losses of C<sub>6</sub>H<sub>6</sub>O as well as of CO at relatively low energy ( $E_{lab} \approx$ 20 eV), followed by the expulsion of C<sub>6</sub>H<sub>6</sub> and CO/H<sup>•</sup> at much higher energies ( $E_{\text{lab}} \ge 60 \text{ eV}$ ). The absence of C<sub>6</sub>H<sub>6</sub> elimination at low collision energies strongly suggests that - upon collisional activation - the  $Fe(C_6H_6)O^+$  ion prior to dissociation undergoes isomerization to presumably  $Fe(C_5H_6)CO^+$  and  $Fe(C_6H_6O)^+$ .

Next, we will describe and discuss the ion/molecule reactions of  $Fe(C_6H_6)O^+$  with the substrates X (Eq. 2 and Table 1). Depending on the nature of the neutral molecule X, three different reaction channels are observed: (i) Association of X takes place to form  $Fe(C_6H_6)(X)O^+$  (Eq. 2a); (ii)



the intact  $C_6H_6$  ligand is replaced by X (Eq. 2b); (iii) oxygen atom transfer from  $Fe(C_6H_6)O^+$  to X occurs (Eq. 2c).

Before discussing these processes, we note that all other substrates X studied (X = H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub>, *n*-C<sub>4</sub>H<sub>10</sub>, *i*-C<sub>4</sub>H<sub>10</sub>, N<sub>2</sub>O and CO<sub>2</sub>) are entirely unreactive toward Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup>, i.e. if the reactions occur at all, their rate constants must be smaller than  $10^{-14}$  cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup>. This observation already demonstrates the huge effect of the benzene ligand in Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup> when compared with "bare" FeO<sup>+</sup> (see above and Scheme 1). In particular, C–H and C–C bond activations, which are hallmarks of the chemistry of "bare" FeO<sup>+[6c]</sup>, are no longer possible. Rather, the only chemical process taking place corresponds to the transfer of an oxygen atom to olefins (Eq. 2c).



Figure 1. CID experiments with the isomers  $Fe(C_5H_6)CO^+$  (a) and  $Fe(C_6H_6)O^+$  (b)

As shown in Table 1,  $Fe(C_6H_6)O^+$  is not capable - in contrast to  $Fe(CH_3)^+$  or  $Fe(OH)^{+[16]}$  - to activate the O-H bond of water. As the heat of formation of  $Fe(C_6H_6)O^+$  is unknown, it is not possible to decide whether hydrogen atom transfer is inhibited on thermochemical or on kinetic grounds. The absence of oxygen atom transfer (Eq. 2c) to generate  $H_2O_2$  is due to the endothermicity<sup>[12]</sup> of this process. The non-occurrence of reaction 2b suggests that the benzene ligand in  $Fe(C_6H_6)O^+$  is more strongly bound than H<sub>2</sub>O in Fe(H<sub>2</sub>O)O<sup>+</sup>. What remains is the formation of the adduct  $Fe(C_6H_6)(H_2O)O^+$ , which is formed with collision rate  $(k_f/k_{coll} = 1.1)$  and which is presumably stabilized by collisional or radiative cooling<sup>[17]</sup>. Formation of a genuine adduct Fe(C<sub>6</sub>H<sub>6</sub>)- $(H_2O)O^+$  is indicated by subjecting the species to a CID experiment ( $E_{lab} \leq 22 \text{ eV}$ ), in which the following products are formed: H<sub>2</sub>O (46%), C<sub>6</sub>H<sub>6</sub> (20%), Fe<sup>+</sup> (4%). Formation

Chem. Ber. 1994, 127, 2499-2503

Table 1. Branching ratios, rate constants  $k_f [10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}]$ , and reaction efficiencies  $k_f / k_{coli}$  for the reactions of Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup> with neutral molecules X (Eq. 2a-c)

| x                                                                    | H <sub>2</sub> O                                                   | CH₃CN                                                              | I C5H5N                           | C <sub>6</sub> D <sub>6</sub> <sup>[a]</sup> | СО                                 | $C_2H_4$                            | C <sub>3</sub> H <sub>6</sub>     | (Z)-2-<br>Butene                  | (E)-2-<br>Butene                  | Isobutene                         | 1,3-Butadiene                     | <i>c</i> -C <sub>6</sub> H <sub>10</sub> <sup>[b]</sup> | 1,3- <i>c</i> -C <sub>6</sub> H <sub>8</sub> <sup>[b]</sup> |
|----------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------|----------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------------|-------------------------------------------------------------|
| Eq. 2a<br>Eq. 2b<br>Eq. 2c<br>$k_f$<br>$k_f/k_{coll}$ <sup>[C]</sup> | $ \begin{array}{r} 1.00 \\ 0.00 \\ 0.00 \\ 23 \\ 1.1 \end{array} $ | $ \begin{array}{c} 1.00 \\ 0.00 \\ 0.00 \\ 38 \\ 1.1 \end{array} $ | 0.55<br>0.45<br>0.00<br>19<br>1.0 | 0.00<br>1.00<br>0.00<br>10<br>0.5            | 0.00<br>0.00<br>1.00<br>7.5<br>1.1 | 0.05<br>0.00<br>0.95<br>10.5<br>1.1 | 0.13<br>0.00<br>0.87<br>12<br>1.1 | 0.00<br>0.02<br>0.98<br>12<br>1.1 | 0.00<br>0.03<br>0.97<br>11<br>1.0 | 0.00<br>0.03<br>0.97<br>12<br>1.0 | 0.00<br>0.91<br>0.09<br>13<br>1.2 | 0.00<br>0.82<br>0.18<br>12<br>1.1                       | 0.02<br>0.80<br>0.18<br>12<br>1.1                           |

<sup>[a]</sup> Similar results are obtained by using toluene, i.e. only Eq. 2b is valid with  $k_f/k_{coll} = 0.95$ . - <sup>[b]</sup> In the reaction of Fe(C<sub>6</sub>D<sub>6</sub>)O<sup>+</sup> with cyclohexene (*c*-C<sub>6</sub>H<sub>10</sub>) and 1,3-cyclohexadiene (1,3-*c*-C<sub>6</sub>H<sub>8</sub>) the branching ratios are identical with those observed for Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup>. - <sup>[c]</sup>  $k_{coll}$  is calculated as described in ref.<sup>[11]</sup>.

of  $C_6H_6^{+\bullet}$  (30%) implies that  $IE(C_6H_6) = 9.246 \text{ eV}^{[12]} < IE$ -[Fe(H<sub>2</sub>O)O].

CH<sub>3</sub>CN reacts similarly to H<sub>2</sub>O with Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup> (Table 1), in that only association takes place (Eq. 2a). Upon CID in addition to benzene loss, at higher energies ( $E_{lab} \ge 12$  eV) the intact CH<sub>3</sub>CN ligand is eliminated, and when subjected to thermal ion/molecule reactions with CD<sub>3</sub>CN we observe the exchange of CD<sub>3</sub>CN for CH<sub>3</sub>CN without any H/D scrambling.

Pyridine (C<sub>5</sub>H<sub>5</sub>N) also forms an association complex with  $Fe(C_6H_6)O^+$ , and CID of the product  $Fe(C_6H_6)(C_5H_5N)O^+$  follows the same pattern in that benzene loss needs less energy ( $E_{lab} \approx 10$  eV). As acetonitrile in  $Fe(C_6H_6)(CH_3CN)O^+$  can be replaced by  $C_5H_5N$ , the following ligand bond strength of X in  $Fe(C_6H_6)(X)O^+$ emerges:  $H_2O < CH_3CN < C_5H_5N$ . The much larger bond dissociation energy (BDE) of pyridine as compared to benzene and acetonitrile is also reflected in the observation that pyridine is capable to bring about the substitution reaction 2b. As already mentioned, the clean replacement of L (L = $C_6H_6$ ,  $C_6D_6$ ) in Fe(L)O<sup>+</sup> by L' ( $C_6D_6$ ,  $C_6H_6$ ,  $C_5H_5N$ ) without any H/D exchange requires the presence of an intact benzene ligand in the  $Fe(L)O^+$  complex formed in the oxidation of FeL<sup>+</sup> by N<sub>2</sub>O (Eq. 1a).

Surprisingly, the substitution process (Eq. 2b) dominates also the reactions of  $Fe(C_6H_6)O^+$  with X = 1,3-butadiene, 1,3-cyclohexadiene and cyclohexene. Control experiments employing  $Fe(C_6D_6)O^+$  demonstrate that in the course of the substitution no transfer-hydrogenation<sup>[9b]</sup> has taken place. Thus, one may argue that these ligands X are more strongly bound to the iron center in FeO<sup>+</sup> than the benzene ligand, which would be difficult to explain. For Fe<sup>+</sup> itself, the *BDEs* follow the sequence  $BDE(Fe^+-isobutene) = 40$  $kcal/mol < BDE(Fe^+-1,3-butadiene) = 48 kcal/mol <$  $BDE(Fe^+-benzene) = 55 \text{ kcal/mol}^{[16b,18]}$ . However, CID experiments of the resulting  $Fe(X)O^+$  products clearly suggest that a connectivity with two separate ligands X and O, i.e. XFeO<sup>+</sup>, is no longer present. For example, in the whole energy regime applied *no* signal corresponding to  $FeO^+$  is observed; rather, ions due to  $Fe^+$  or  $Fe(C_xH_y)^+$  are detected. In addition, if in secondary reactions the product  $Fe(X)O^+$  is allowed to react with olefins no oxygen atom transfer is observed. Therefore, we conclude that replacement of benzene by X = 1,3-butadiene, cyclohexene and

Chem. Ber. 1994, 127, 2499-2503

1,3-cyclohexadiene is not a simple ligand-exchange process as implied by Eq. 2b. Rather, the "incoming" ligand X is interacting with the oxygen atom of the iron oxide. We will return to this point later in the context of the oxygen atom transfer to X (Eq. 2c).

From the data in Table 1 it is obvious that oxygen transfer takes place only to CO, alkenes and alkadienes. Interestingly, in the reaction of  $Fe(C_6H_6)O^+$  with the unsaturated hydrocarbons we do not observe any product that points to the activation of C-H or C-C bonds, processes which are typical of the reactions of "bare" FeO+ with these substrates. Further, the absence of a kinetic isotope effect in the reaction of  $Fe(C_6H_6)O^+$  with  $C_2D_4$  also underlines our supposition that the presence of the benzene ligand in the metal oxide suppresses C-H bond activation of the "incoming" olefin X. Although in an FTICR experiment the nature of the neutral products formed in ion/molecule reactions cannot be probed directly, in the following we will present circumstantial evidence that for X = cyclohexene(and presumably also for other olefins) the oxygen transfer product  $C_6H_{10}O$  most likely corresponds to a genuine epoxide. In addition, arguments will be presented that both the epoxide formation (Eq. 2c) as well as the formal ligand exchange (Eq. 2b) with olefins are proceeding via the same intermediate. To this end, we have subjected the  $Fe(C_6H_{10}O)^+$  ion, formed in the reaction of  $Fe(C_6H_6)O^+$ with cyclohexene to a series of experiments. As already mentioned above, several independent results demonstrate that the "C<sub>6</sub>H<sub>10</sub>O" unit does not correspond to two separate ligands, e.g. an oxo and a cyclohexene group. In fact, the question centers around the problem as to whether " $C_6H_{10}O$ " is an epoxide ligand or its isomeric keto form. A clear-cut distinction is provided by the data reported in Table 2. In the thermal ion/molecule reaction of 1,3-butadiene with  $Fe(C_6H_{10})O^+$  isomers, identical branching ratios are obtained for the ions formed via pathways (a) and (b) in Scheme 2, thus pointing to identical product ions. In contrast, the  $Fe(C_6H_{10})O^+$  ion formed by reaction of  $Fe(C_2H_4)^+$  with cyclohexanone (process O) behaves distinctly different.

Taken all experimental findings together, the reaction sequence depicted in Scheme 3 for X = cyclohexene seems very plausible and accounts for the unusual behavior of

| Table 2. Branching ratios fe | or the reactions of 1,3-butadiene | with Fe(C <sub>6</sub> H <sub>10</sub> O) <sup>+</sup> isc | omers formed according to Scheme 2 |
|------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------------|
|------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------------|

| $Fe(C_6H_{10}O)^+$ from reaction | Fe <sup>+</sup> | $Fe(C_6H_8O)^+$ | Product intensities for $Fe(C_6H_6)^+$ | $Fe(C_{10}H_{14}O)^+$ | $Fe(C_{10}H_{12}O)^+$ |  |
|----------------------------------|-----------------|-----------------|----------------------------------------|-----------------------|-----------------------|--|
| (a)                              | 0.10            | 0.61            | 0.29                                   | 0.00                  | 0.00                  |  |
| (b)                              | 0.11            | 0.58            | 0.31                                   | 0.00                  | 0.00                  |  |
| (c)                              | 0.00            | 0.00            | 0.00                                   | 0.48                  | 0.52                  |  |

Scheme 2



 $Fe(C_6H_6)O^+$  toward alkenes. Rather than attacking the metal ion directly, followed by expulsion of  $C_6H_6$  (Path (a)), the reaction is suggested to commence with approache of the oxygen atom resulting in the formation of the inter-

mediate 2 (path b). Depending on thermochemical aspects, this species has two options: (i) formation of 2 proceeds by elimination of C<sub>6</sub>H<sub>6</sub> to generate Fe(OC<sub>6</sub>H<sub>10</sub>)<sup>+</sup> (3) and C<sub>6</sub>H<sub>6</sub>. (ii) The "C<sub>6</sub>H<sub>10</sub>O" unit evaporates from the complex as an epoxide leaving behind Fe(C<sub>6</sub>H<sub>6</sub>)<sup>+</sup>.

Scheme 3



In conclusion, the benzene ligand in  $Fe(C_6H_6)O^+$  does not behave like a simple spectator ligand in the gas-phase reactions of this organometallic complex with various substrates X. Rather, it brings about a fundamental change in reactivity as compared with "bare" FeO<sup>+</sup>. While the latter metal oxide mediates C-H/C-C bond activation (Scheme 1), these processes are entirely absent in  $Fe(C_6H_6)O^+$ . Instead, oxygen transfer to alkenes and replacement of C<sub>6</sub>H<sub>6</sub> by X are the dominant processes. Most interestingly, while the ligand exchange  $Fe(C_6H_6)O^+ + X \rightarrow Fe(X)O^+ + C_6H_6$ corresponds to a well-known substitution process for X = $C_6D_6$  and  $C_5H_5N$ , for X = 1,3-butadiene, cyclohexane and 1,3-cyclohexadiene evidence is presented that the "incoming" ligand X rather than attacking the metal center will first coordinate to the oxygen atom (Scheme 3, path (b), and the intermediate 2 thus formed will, depending on

thermochemical grounds, fall apart either to  $Fe(OC_6H_{10})^+$ (3)/C<sub>6</sub>H<sub>6</sub> or  $Fe(C_6H_6)^+$ /epoxide.

We are very grateful for valuable discussions with *M. F. Ryan*, *N. Goldberg* and *J. Schwarz*. Financial support by the *Deutsche* Forschungsgemeinschaft and the Fonds der Chemischen Industrie is appreciated.

## Experimental

Gas-phase experiments were performed by using a Spectrospin CMS 47X Fourier-transform ion cyclotron resonance mass spectrometer<sup>[19]</sup>, which was equipped with an external ion source<sup>[20]</sup>. Metal ions were generated by laser desorption/ionization by focusing the beam of a Nd: YAG laser (Spectron Systems;  $\lambda = 1064$  nm) on a metal target which was mounted in the external ion source. The ions were transferred from the source to the analyzer cell by a system of electrostatic potentials and ion lenses. The ion source, the ion transfer system, and the main vacuum chamber of the spectrometer were differentially pumped by three turbo molecular pumps. After deceleration, the ions were trapped in the field of a 7-T superconducting magnet (Oxford Instruments). The ions were isolated by using FERETS<sup>[21]</sup>, a computer-controlled ion-ejection protocol which combines single-frequency ion ejection pulses with frequency sweeps to optimize ion isolation. Great care was applied to avoid any off-resonance excitation of the ion to be isolated while ejecting the <sup>13</sup>C-isotope signals<sup>[22]</sup>. All functions of the instrument including all pulse-sequence steps were controlled by a Bruker Aspekt-3000 minicomputer. For collisional cooling of any excited states possibly formed, argon was present as a buffer gas at a constant "background" pressure of a ca.  $5 \times 10^{-7}$  mbar. For the generation of  $Fe(C_6H_6)^+$ , cyclohexene was introduced through a pulsed valve<sup>[23]</sup> according to literature procedures<sup>[24]</sup>. A second pulsed valve contained N<sub>2</sub>O for the production of Fe(C<sub>6</sub>H<sub>6</sub>)O<sup>+</sup>. Further substrates were submitted to the cell by using a leak valve. Pseudo first-order rate constants reported in this study were determined from the logarithmic decay of a reactant intensity over time and are reported with ±30% error unless stated otherwise. Branching ratios were determined from the temporal ion distributions acquired during kinetic analysis and are reported with ±10% uncertainty. CID<sup>[19,25]</sup> experiments were performed as described previously.

Cyclohexene, 1,2-epoxycyclohexane, cyclohexanone, pyridine, benzene,  $D_2O$  and  $[D_6]$ benzene (98% pure; Aldrich) were used as supplied except for several freeze-pump-thaw cycles. In addition, 1,3-cyclohexadiene was also distilled before use in order to exclude dimerization products. Other reagent gases were obtained from commercial sources and were used without further purification.

<sup>[1] [</sup>Ia] For selected reports on C-H bond activation in hydrocarbons by transition-metal oxides, see: A. E. Shilov, Activation of Saturated Hydrocarbons by Transition-Metal Complexes, Reidel, Boston, 1984. - [1b] P. R. Ortiz de Montellano, Cytochrome P450: Structure, Bonding and Biochemistry, Plenum Press, New

York; 1986. - <sup>[Ic]</sup> C. L. Hill, Activation and Functionalization of Alkanes, Wiley, New York, 1989. - <sup>[Id]</sup> J. A. Davies, P. L. Watson, J. F. Liebman, A. Greenberg, Selective Hydrocarbon Activation. Principles and Progress, VCH Publishers, New York, 1990.

- <sup>[2]</sup> D. Schröder, A. Fiedler, M. F. Ryan, H. Schwarz, J. Phys. Chem. 1994, 98, 68.
- [3] D. Schröder, H. Schwarz, Angew. Chem. 1990, 102, 1468; An-gew. Chem. Int. Ed. Engl. 1990, 29, 1433.
- [4] D. Schröder, H. Schwarz, Helv. Chim. Acta 1992, 75, 1281.
- <sup>[5]</sup> D. Schröder, H. Florencio, W. Zummack, H. Schwarz, Helv. Chim. Acta 1992, 75, 1792.
- [6] [6a] D. Schröder, A. Fiedler, J. Hrušák, H. Schwarz, J. Am. Chem. Soc. 1992, 114, 1215. [6b] D. Schröder, H. Becker, W. Zummack, H. Schwarz, J. Am. Chem. Soc. 1994, 116, 1096. -[6c] A. Fiedler, D. Schröder, S. Shaik, H. Schwarz, J. Am. Chem. Soc., in press.
- [7] D. E. Clemmer, Y. M. Chen, F. A. Khan, P. B. Armentrout, J. Phys. Chem. 1994, 98, 6522.
- <sup>[8]</sup> For many references concerning  $MO^+$  in general as well as a detailed study of the reactivity of  $MO^+$  with  $C_6H_6$  in particular, see: M. F. Ryan, D. Stöckigt, H. Schwarz, J. Am. Chem. Soc., in press.
- Some typical examples from our laboratory are discussed in: [<sup>9a]</sup> D. Schröder, K. Eller, T. Prüsse, H. Schwarz, Organometall-ics 1991, 10, 2052. [<sup>9b]</sup> S. Karraß, D. Schröder, H. Schwarz, Chem. Ber. 1992, 125, 751. [<sup>9c]</sup> D. Stöckigt, H. Schwarz, Chem. Ber. 1992, 125, 2817. [<sup>9c]</sup> J. Schwarz, H. Schwarz, Chem. Ber. 1993, 126, 1257. [<sup>9c]</sup> S. Karraß, D. Stöckigt, D. Schröder, I. Schwarz, Organometallics 1993, 12, 1449. [<sup>9f]</sup> D. Schröder, I. Hzušák, H. Schwarz, Ber. Bungenges, Phys. Chem. Schröder, J. Hrušák, H. Schwarz, Ber. Bunsenges. Phys. Chem. 1993, 97, 1085.
- <sup>[10]</sup> An interesting ligand effect operative in condensed-phase oxidation processes may be found in: V. W. Day, T. A. Eberspacher, W. G. Klemperer, B. Zhong, J. Am. Chem. Soc. **1994**, 116, 3119.
- <sup>[11]</sup> [<sup>11a]</sup> T. Su, W. Chesnavich, J. Chem. Phys. 1982, 76, 5183. [<sup>11b</sup>] T. Su, J. Chem. Phys. 1988, 89, 5355.
- <sup>[12]</sup> S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, W. G. Mallard, J. Phys. Chem. Ref. Data 1988, 17, Suppl. 1.
- <sup>[13]</sup> For example,  $Fe(C_5H_6)^+$  reacts with benzene to form

B

 $Fe(C_{11}H_{11})^+$  + H as described previously<sup>[4]</sup> for a genuine Fe(cy-

- <sup>14</sup> <sup>[14]</sup> <sup>[15]</sup> <sup>[15]</sup> <sup>[15]</sup> <sup>[15]</sup> <sup>[16]</sup> <sup>[15]</sup> <sup>[16]</sup> <sup>[15]</sup> <sup>[16]</sup> <sup>[15]</sup> <sup>[16]</sup> <sup>[15]</sup> <sup>[16]</sup> <sup>[15]</sup> <sup>[16]</sup> <sup>[</sup>
- Feice<sub>3</sub>*H*<sub>6</sub>/CO<sup>-1</sup> is generated first by reaction of Fe<sup>-6</sup> which cyclo-pentene to generate  $Fe(C_5H_6)^+ + H_2$  (D. B. Jacobson, B. S. Freiser, *J. Am. Chem. Soc.* **1983**, *105*, 7492); in the presence of Ar ( $p_{Ar} = 5 \times 10^{-7}$  mbar) this ion undergoes ligand association with pulsed-in CO to generate  $Fe(C_5H_6)CO^+$ . When this com-plex is allowed to react with X (X = H<sub>2</sub>O, C<sub>2</sub>H<sub>4</sub>, CH<sub>3</sub>CN) un-der the strengt conditions in keeping with the presence of a CO der thermal conditions, in keeping with the presence of a CO ligand the substitution process  $Fe(C_5H_6)CO^+ + X \rightarrow$  $Fe(C_5H_6)X^+ + CO$  takes place. [<sup>16</sup>] [<sup>16a</sup>] O. Blum, D. Stöckigt, D. Schröder, H. Schwarz, Angew.
- Chem. 1992, 104, 637; Angew. Chem. Int. Ed. Engl. 1992, 31, 603. <sup>[16b]</sup> D. Schröder, Ph. D. Thesis, Technische Universität Berlin, D83, 1992.
- [17] [17a] R. C. Dunbar, Int. J. Mass Spectrom. Ion Processes 1990, 100, 423. [17b] R. C. Dunbar, Mass Spectrom. Rev. 1992, 11, 309. [17c] D. Gerlich, S. Horning, Chem. Rev. 1992, 92, 1509.
   [17d] D. Grithe, I. Mars Spectrom, Int. Processes 1993, 1003.  $^{-174}$  D. Smith, Int. J. Mass Spectrom. Ion Processes 1993, 129, 1.  $^{-174}$  D. Smith, Int. J. Mass Spectrom. Ion Processes 1993, 129, 1.  $^{-174}$  R. C. Dunbar, G. T. Uechi, B. Aramoto, J. Am. Chem. Soc. 1994, 116, 2466.
- <sup>[18]</sup> J. A. Martinho Simões, J. L. Beauchamp, Chem. Rev. 1990, 90, 629, and references therein.
- <sup>[19]</sup> A more detailed description of the machine and the working conditions are given in: K. Eller, H. Schwarz, *Int. J. Mass Spec-*
- <sup>[20]</sup> <sup>[20a]</sup> P. Kofel, M. Allemann, H. Kellerhals, K. P. Wanczek, *Int. J. Mass Spectrom. Ion Processes* 1985, 65, 97. <sup>[20b]</sup> P. Kofel, M. Allemann, H. Kellerhals, K. P. Wanczek, Adv. Mass Spectrom. 1985, 10, 885.
- [21] R. A. Forbes, F. H. Laukien, J. Wronka, Int. J. Mass Spectrom.
- In Processes 1988, 83, 23.
   [22] [22a] J. L. Beauchamp, Ann. Rev. Phys. Chem. 1971, 22, 527. –
   [22b] A. J. R. Heck, L. J. de Koning, F. A. Pinkse, N. M. M. Nibbering, Rap. Commun. Mass Spectrom. 1991, 5, 406.

- [23] T. J. Carlin, B. S. Freiser, Anal. Chem. 1981, 55, 574.
   [24] See references given in ref.<sup>[15]</sup>.
   [25] R. B. Cody, B. S. Freiser, Int. J. Mass Spectrom. Ion Phys. 1982, 41, 199.

[263/94]